
Week 10 – Friday



 What did we talk about last time?
 Exam 2 post mortem
 Language approaches to threading
 Practice with threads
 Prime counting









 Let's write a threaded program that counts the number of primes 
less than 100,000,000

 We'll spawn a number of threads and divide up the range of values 
from 0 to 100,000,000 evenly

 To send data to each thread and get the result, we'll use 
dynamically allocated versions of the following struct:

struct range {
unsigned long start;
unsigned long end;
unsigned long count;

};



 Divide the total number by the number of threads to determine how 
many numbers to give each thread

 Loop through all threads:
 Allocate a range struct to hold the lower and upper value for each thread
 Create each thread

 Loop through all threads:
 Join them

 Inside each thread:
 Loop from the lower to the upper value and increment a counter if the value is 

prime
 Store the count into the range struct
 Call pthread_exit()when done



 As a reminder, here are the POSIX functions we need

 Create a new thread (not as bad as it looks)

 Exit from the current thread (giving a pointer to the result, if any)

 Join a thread (getting a pointer to its result, if any)

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

void pthread_exit (void *value_ptr);

void pthread_join (pthread_t thread, void *value_ptr);





 Now you have all the tools needed to create, run, and join threads
 But you don't have any tools to avoid the problem of race conditions
 Synchronization is used to coordinate between threads, often by 

enforcing critical sections, sections of code that only one thread can be 
executing at a time

 Common synchronization tools:
 Locks (mutexes)
 Semaphores
 Barriers
 Condition variables

 If used incorrectly, however, synchronization tools can lead to other 
problems such as deadlock and livelock



 The following are common examples of synchronization:
 Multiple threads share a data structure, but only one can write to it at 

a time
 Only so many threads can access a shared resource to avoid 

slowdowns
 Certain events need to happen in a certain order
 Some calculations must be done before an action can be taken

 Performing synchronization so that the result is correct while 
avoiding performance penalties is challenging



 Recall that a critical section is a section of code that it's safe 
for only a single thread to be executing

 Often this is because non-atomic memory accesses (such as 
reading a value, doing calculations, and then writing back to 
memory) can get inconsistent results if more than one thread 
is executing them concurrently

 A common use of synchronization tools is to block threads 
trying to access a critical section if a thread is already 
executing it



 Peterson's solution demonstrates a way to enforce a critical section for 
two threads

 Here's the idea, where the flag array and turn are shared variables

flag[self] = true;
turn = other; // Politely assume it's the other person's turn

// Execute loop until it's safe to enter
while (flag[other] == true && turn == other) ;

// Here's where the code for the critical section goes

flag[self] = false; // Mark yourself as finished



 This state diagram 
shows all the possible 
states the system can 
be in

 There's no state where 
both 0 and 1 are in the 
critical section

 The only changes to 
memory that matter 
are atomic writes



 We often want three synchronization properties:
 Safety: There's never more than one thread in the critical section
▪ Also called mutual exclusion

 Liveness: If no thread is in the critical section and one or more threads try 
to enter, one thread will be able to
▪ Also called progress

 Fairness: Assuming that no thread will stay in the critical section forever, a 
thread trying to get into the critical section will eventually get in
▪ Also called bounded waiting

 Peterson's solution provides all three



 It's only described for two threads and gets messy for more
 It requires thinking about which variables to set rather than 

providing more general tools (like locks)
 It requires busy waiting (repeatedly executing a loop)
 It's not guaranteed to work on modern hardware that 

sometimes switches the order of instructions for better 
pipelining
 These changes are guaranteed to work in a single-threaded context 

but can't take into account what other threads are doing





 A key synchronization tool is called a lock (or a mutex, short 
for mutual exclusion)

 Critical sections can be protected by a lock
 First code acquires the lock
 Then it performs the code in the critical section
 Then it releases the lock

 For POSIX threads, lock functionality is provided by several 
mutex functions that operate on pthread_mutex_t
objects



 Mutual exclusion
 Locks start unlocked
 Only one thread can acquire a lock at a time
 No other thread can acquire a lock until it's been released

 Non-preemption
 A lock must be voluntarily released by the thread that acquired it

 Atomic operations
 Acquire and release are atomic operations

 Blocking acquires
 If a thread tries to acquire a lock, it's blocked and added to the queue
 When the thread holding the lock releases it, only one thread acquires it



 Create a mutex with the specified attributes

 Destroy an existing mutex

 Acquire a mutex, blocking until you succeed

 Try to acquire a mutex, returning non-zero if another thread has the mutex

 Release the mutex

int pthread_mutex_init (pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_mutex_lock (pthread_mutex_t *mutex);

int pthread_mutex_trylock (pthread_mutex_t *mutex);

int pthread_mutex_unlock (pthread_mutex_t *mutex);



 Here's a thread that uses a mutex when incrementing a global variable

int global = 5;

// Each increment thread gets a pointer to the mutex
void *
increment (void *args)
{
pthread_mutex_t *mutex = (pthread_mutex_t *) args;

// Lock for the critical section, then release
pthread_mutex_lock (mutex);
global++;
pthread_mutex_unlock (mutex);

pthread_exit (NULL);
}



 The following program creates the mutex and passes it to two threads
 Note that the mutex lives on the stack, but that's okay since this function won't return 

until after the other threads are done

pthread_t threads[2];
pthread_mutex_t mutex;

// Initialize the mutex
pthread_mutex_init (&mutex, NULL);

// Create the child threads, passing pointers to the mutex
assert (pthread_create (&threads[0], NULL, increment, &mutex) == 0);
assert (pthread_create (&threads[1], NULL, increment, &mutex) == 0);

// Join the threads
pthread_join (threads[0], NULL);
pthread_join (threads[1], NULL);

// Confirm the result
assert (global == 7);



 The first example on the previous slide will take much longer, 
since it has to lock and unlock 1,000,000 times

 On the other hand, the second example will block all other 
threads from running code that depends on the lock until it's 
finished

 Neither is very realistic, since incrementing a variable 
1,000,000 times in a loop is ridiculous

 There's no simple solution: depends on the problem
 Always getting the right answer is the first goal and then 

tuning for better performance comes second







 Finish locks
 Semaphores



 Finish Assignment 6
 Due tonight by midnight!

 Work on Project 3
 Read section 7.4


	COMP 3400
	Last time
	Questions?
	Assignment 6
	Thread Practice
	Concurrent prime number search
	Algorithm
	POSIX thread functions
	Synchronization
	Synchronization
	Examples of synchronization
	Critical sections
	Peterson's solution
	Why Peterson's solution works
	Synchronization properties
	Why Peterson's solution doesn't work in general
	Locks
	Locks
	Lock features
	POSIX mutex functions
	Mutex example
	Main program
	Length of critical sections
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

